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SUMMARY

This manual explains the theory and operation of the f'mite-difference time domain code

FDTD ANT developed by Analex Corporation at the NASA Lewis Research Center in Cleveland,

Ohio. This code can be used for solving electromagnetic problems that are electrically small or

medium (on the order of 1 to 50 cubic wavelengths). Calculated parameters include transmission

line impedance, relative effective perrnittivity, antenna input impedance, and far-field patterns in

both the time and frequency domains. The maximum problem size may be adjusted according to
the computer used. This code has been run on the DEC VAX and 486 PC's and on workstations

such as the Sun Sparc and the IBM RS/6000.

INTRODUCTION

The finite-difference time domain (FDTD) method is a general implementation of

Maxwell's equations in differential form. Because the method is general, it may be applied to a

wide variety of electromagnetics problems, including radiating antennas (refs. 1 and 2), scattering
problems (refs. 3 and 4), electromagnetic interference (EMI, ref. 5), and microwave circuit

analysis. By using a variety of boundary conditions, the method can be applied to closed- or open-
boundary problems.

A low-frequency technique, FDTD is applied to a gridded object; that is, the fields on the

object are sampled a number of times per wavelength. Usually, FDTD is applied to a regular,

orthogonal grid, but it can be applied to any structured grid. This technique has not been

demonstrated with unstructured grids. A typical workstation can deal with a problem of 1 million
grid cells, which might extend 5 to 10 wavelengths on a side.

The FDTD method was first formulated for electromagnetics (EM) by Yee in 1966

(ref. 6). Most electromagnetic FDTD codes are still based on the Yee cell, which has the three

electric field components (Ex, Ey, Ez) located at the midpoints of the cell edges and the three

magnetic field components (Hx, Hy, Hz) located at the centers of the cell faces (fig. 1). The

differential forms of Maxwell's equations are then quantized to produce central-differenced



equations.Manypapershavebeenpublishedusingthismethodfor electromagnetics,primarily
sincethe mid-1980'swhencomputersbecamepowerful enoughto donontrivialproblems.

PROBLEM SIZE

To obtain accurate results, a minimum number of ceils per wavelength must be used.

There is some debate as to what this number is, but 7 to15 cells per wavelength in the material

with the shortest wavelength is a generally accepted limit. Stability is maintained by not permitting

energy information to propagate across a cell in less than one time step. The maximum size of the

time step is limited by the cell dimensions, particularly the minimum cell dimension. Based on the

cell size information, the time step is automatically calculated by FDTD_ANT.

Because the number of cells per wavelength is fixed, as the problem size increases, the
memory and cpu time needed for execution also increase. A problem N cells long on a side has N3

cells. For each cell there are six real field components and six integer material properties. If the

computer uses four bytes for a real number and two for an integer (typical FORTRAN sizes), the

total storage will be 36N3, plus a little more for other arrays of order N or N2. The execution time

is approximately the execution time per cell times the number of cells times the number of time

steps. The number of time steps needed increases as N so for a three-dimensional problem, the
execution time increases as N4. In contrast, according to the method of moments (MoM) for each

dimension, an N-by-N matrix is inverted, requiring N2 operations. Therefore, the execution time

increases as N6 for a three-dimensional problem. Note that MoM is a frequency domain method

whereas FDTD is time domain. A Fourier transform may be used to obtain frequency information

over a wide range of frequencies from given time domain information. This method may provide
a more efficient means of obtaining broadband frequency information than a frequency domain

method. For a limited number of frequencies, it is often more efficient to use a frequency domain

method that solves for a single frequency on each pass. For small problems the time inefficiency

due to transformation from one domain to another may not be significant.

BOUNDARY COND_IONS

At the boundaries of a problem space, the update equations cannot be used; instead, some

type of absorbing boundary condition (ABC) is used. The FDTD_ANT code employs first- and

second-order Mur boundary conditions, which use extrapolation from interior points to calculate
the field values on the boundaries.

Because all ABC's are approximate, some reflection will occur, which limits how close an

object in the problem space can be located to the problem space boundary. With the Mur
conditions, 7 to 10 cells should be the minimum spacing between the object and the boundary. In

some cases, such as the boundary above the radiating aperture of an antenna, the spacing must be

larger because of the large amount of energy incident upon the boundary. To model a substrate as

being infinite in extent, the substrate should run all the way across the problem space (otherwise

there will be reflections from the edge of the substrate). The same modeling method apphes to the

ground plane and any nonterminated microstrip lines. However, the edges of the antenna or other

resonating devices (particularly radiating edges) should obey the minimum spacing of 7 to 10
cells.



INPUTTING INFORMATION

File Commonr.for

This file is the first to be edited before a new problem is run. All the common blocks and

constants for the fdtd_ant code are contained in this file. Whenever changes are made to

common.for, the code fdtd_ant.for must be recompiled.

Size of the problem domain.raThe size of the problem domain is defined by the number of

cells in the x-, y-, and z-directions, defined as NX, NY, and NZ. These values are integers.

Cell size.--With one exception, all cells are the same size, but the lengths of the sides in the

x-, y-, and z-directions can vary. The side lengths are entered in meters as the parameters DELX,

DELY, and DELZ. If a fine grid is used (see Fine-grid regions), there will be two cell lengths in a

given direction, one of which is three times larger. In this case, the larger dimension is entered.

In general, no other changes need be made to the file commonr.tor. For a given problem,

the number of cells and the cell side lengths are only specified once so the code tdtd_ant.for need
be compiled only one time.

File fdtd_ant.dat

This file is the main input for the code fdtd_ant.for. When a component is designed, most

of the work is adjusting the design by editing fdtd_ant.dat and then running fdtd_ant.exe and

sl 1.exe. Note: all physical dimensions of length are in cells, not in meters.

Number of time steps.--This number determines how long the program will run. When a

pulse excitation is used, the problem must run until all the scattered pulses subside (radiate out of

the problem space). For a pulse on a straight transmission line, the problem is run until the incident

pulse passes by all the measurement points. Any reflection results from imperfections in the

absorbing boundary condition; therefore, it is valid to use only information obtained before these

reflections. For a sinusoidal excitation, the problem must run until steady state is reached, at which

point the magnitude of the sinusoidal peaks has reached a stable value. The better the component is

matched, the faster steady state is acheived. Roughly speaking, the sinusoidal excitation will last as

long as the scattered pulse excitation, but it can be much less or much more depending on how

well the component is matched at that particular frequency. For a typical resonant antenna, the

incident pulse runs for 500 to 700 steps; the scattered pulse, for 2000 to 5000 steps; and the

sinusoidal excitation, for 1500 to 5000 steps.

Inputs Related to Source Type Used

Source type._This input describes the shape of the excitation in time. Sources 1 and 2 are

pulses: the first is Gaussian and has the same shape in the frequency and time domains; the second
is sinusoidal and is constructed from cosines and sines in the time domain. For this reason, the

frequency domain response has sidelobes similar to those of a sinc function. The third source is a

sinusoidal excitation that ramps up from zero over two periods.

Source amplitude.--This number is arbitrary and is usually set to 1000.0.



Beta/frequency.---Forthepulseexcitations(sourcetype 1or 2),enterthehalf-widthof the
pulsein time steps(i.e.,thenumberof timestepstakenfor thepulseto advancefrom zeroto its
maximumvalue).As thepulsewidensin thetimedomain,it narrowsin thefrequencydomain.As
thefrequencyincreases,thewavelengthdecreases,asdoesthenumberof cellsperwavelengthfor
agivengrid.At frequencieswherethegridis coarse,theresponsewill beinaccurateandpotentially
unstable.Therefore,thereshouldbevery little energyin thehigherfrequencies.If thefrequency
domainpulseis toonarrow,theresponseat frequenciesof interestmaybelost in thenoise.A rule
of thumb is thatthefrequencyresponsebedownby about80dB by thetimethefrequencyreaches
thepoint wherethereareonlyfour cellsperwavelength.A goodchoicefor thepulsehalf-width is
125to 250steps.

For thesinusoidalexcitation(sourcetype3), enterthefrequencyin gigahertz.
Feed type_ ._This integer flag indicates the physical shape over which the forcing function

is applied.

• Feed type 0 is used for scattering problems. The forcing function is a plane wave with a

certain polarization and propagation direction. This feed type is handled somewhat
differently from the way other feed types are because it has different def'ming

parameters.
• Feed type 1, a wire, is a delta gap voltage generator that has arbitrary length but zero

thickness. The wire is uniformly excited.

• Feed type 2, a microstrip, has zero size in one dimension and is planar in extent. It is

uniformly excited. When used with a microstrip line, the feed stretches the width of the

microstrip line and extends from the microstrip line to the ground plane.

• Feed type 3, a waveguide, is planar in extent, but the excitation is weighted as a half-
sinusoid to represent the lowest order of the resonant transverse mode in a recangular

waveguide.
• Feed type 4, a large rectangular aperture, is the same as a microstrip feed but can be

used in cases when the feed size is larger than 10-by-10 cells.

For a coaxial feed, the impedance of the coaxial line in ohms is entered.

Feed location.mThis input describes the physical dimensions of the feed region. There

may be more than one region so on the first line, the number of feeds is entered. On the

subsequent lines (one per feed), the following information is entered for feed types other than 0:

the starting values of the region in the x-, y-, and z-directions; the width of the region in cells; and

the relative phase of each feed in degrees. For example, a phased array could be modeled as a
number of radiating elements, each with its own feed line and feed source, phased to give the

desired results. A coaxial microstrip line is modeled as having two feed sources, one on each side

of the main line, with opposite phases. Note that the wire, microstrip, waveguide, and coaxial feeds

are limited to a 10-by-10 cell size.

For the plane wave (feed type 0), the entered information is the direction of the incident
wave (defined as the direction the wave comes from, not the direction of the propagation vector)

and the theta and phi components of the E-field polarization vector.

Source polarization..---This input is the E-field polarization for the source region. Enter 1,

2, or 3 for the x-, y-, or z-directions, respectively. For the coaxial feed, enter the axis along which
the coaxial center conductor lies (since the coaxial feed has two E-field components in cartesian

coordinates). This information is not used for the plane wave case.
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InformationRelatedto ProgramOutput

Types of data output .--Enter the integers IDATA and NSTEP on one line.

• For IDATA = 1, data are only saved after every NSTEP time steps.

• For IDATA = 2, data are saved after every NSTEP time steps; near-field information is
also saved.

• For IDATA = 3, only near-field information is saved.

Number of data points sampled.--Enter the number of data points that are saved after
every NSTEP time steps.

Output data descriptions.mNote that these do not have to be a single point. If the entry

describes more than one point, the output value will be the summation over all the points in the

entry. Each sampled value is on a separate line. The parameters are the starting x-, y-, z-cell

location, the width of the data sampling area in cells, and the data type. A width of zero

corresponds to one point, with the value sampled at the starting cell location. Therefore, if the

width is two cells, the output will be a summation over three points. The symbol * represents a
digit placeholder.

A three-digit integer indicates the data type as follows:

First digit

0"*

1"* Ex

2** Ey
3** Ez

4** Hx

5** Hy

6** Hz

7** Ix

8** Iy

9** Iz

energy density or Poynting vector

current through a rectangular loop in the y, z-plane

Second digit

01" energy density 0.5°( e. IEI2 + _t.IHI 2 )

02* Poynting vector ET x HT, where the subscript T represents components transverse
to indicated direction.

If the first digit is not zero, the second digit is usually zero.

Third digit
02* for Poynting vector 1, 2, or 3 indicates that the vector lies along x-, y-, or z-axis,

respectively. For other cases the third digit is usually zero.

This is not a complete listing of all possible values; these are the most commonly used.



Number of near-field data sets.--Enter the number of near-field data sets saved at the end

of the calculation for converting to far-field patterns (or for estimating the power contained in a

problem).

Near-field data descriptions.mFor each data set, two output files are created. The fries for
the first data set are for011.dat and forO12.dat. For a second data set, the files are forO13.dat and

forO14.dat, etc. These input parameters are very similar to the parameters used for the output data

(Output data descriptions). The final value, however, is a one-digit integer, ff the data type is 1, the
first ftle for each data set contains the complex E-field components. The second ftle contains the

complex H-field components. If the data type is 2, the fast file contains the magnitude of one of

the tangential E-field components, and the other contains the magnitude of the second tangential

E-field component. Data type 1 is used to obtain far-field information; data type 2 is used to obtain

graphical output describing the near fields (e.g., contour or vector plots).

Information Describing Problem Geometry

Fine-grid regions.--The fine-grid option allows the cell dimensions to be specified in a

certain region as one-third the size of the values in file commonr.for. This option can be used to

model some aspect of the object modeled in freer detail. It can also be used to enlarge the cells

between the object and the outer boundary so that the absorbing boundary conditions are applied

farther away from the object. Enter the starting and ending points of the fine grid for the

x-direction, then the starting and ending points for the y-direction followed by the z-direction. If the

starting cell point is 0, it is assumed that there is no fine grid for that direction. Note that this entry

format is different from that used in other places in this file.

Object des.criptions._The model to be analyzed is described in this section. Each line is

used to describe a simple object that has a basic shape and material type. Complex objects are built

as a collection of simple objects. The order in which objects are entered is very important. If two

objects share a boundary (meaning the material properties of that object are applied to the same

points), the common points will have the material type of the last object entered. For this reason,

when a metal-clad substrate is used, the substrate should be entered before the ground plane and

any surface properties. When two nonmetal objects touch, the boundary is often described as

having a dielectric constant that is the average of the values for the two materials (e.g., a Duroid

5880/air interface has a permittivity _ of 1.6). After the last object is entered, another line that

begins with a -1 is used to tell the program that there are no more objects.

Because of the quantized nature of the material properties (only defined once for each cell),

there is some uncertainty about where one material begins and another ends; therefore, a f'mite-

length object will typically produce results as though it were one cell longer than it is modeled. For

a short dimension, this error is closer to a half-cell. For example, if the cell size is 0.3 mm, a patch

3.0 mm long would be better modeled with 9 cells than with 10 cells. A microstrip line that is

0.75 mm wide can best be modeled by a metal object that is 2 cells wide.

There are eight integer parameters for each object. The fast number is the object type and

the second is the material type. The remaining parameters describe the location and size of the

object:

Object type 1, a rectangular cube or plane (no more than one width can be zero). Enter

the x-, y-, z-cell starting coordinates and the x-, y-, and z-widths of the object in cells.

Note that the far wall of the object is located at the cell with coordinate value equal to the



startingcoordinateplustheobjectwidth.If aspacehasNX = 50 and a substrate crosses

the entire space in the x-direction, the starting x-value is 1 and the width is 49, not 50.

• Object type 2, a wire (two of the dimensional widths = 0). The dimensional parameters
are the same as those for the rectangular cube.

° Object type 3, a cylinder with its axis along a principal axis. The f'n'st three location

parameters are the x-, y-, and z-cell coordinates of the center of the circle that forms the

lower end of the cylinder. The next value is the direction of the cylinder axis and is 1, 2,

or 3 for the x-, y-, or z-axes, respectively. The next value is the height of the cylinder in

cells, and the last value is the radius of the cylinder in cells.

• Object type 4, a sphere. The fh'st three location parameters describe the center of the

sphere, and the next value is the radius of the sphere in cells. The final two values on the

input line must be present but are not used.

The material type is 0 for freespace and 1 for perfect electrical conductor (p.e.c.). The

remaining values describe dielectric materials. The permittivity and conductivity are set in

subroutine SETUP in file fdtd_ant.lor. At this time, material type 2 corresponds to RT/Duroid
5880 (er = 2.2) and material type 4 corresponds to (er =1.6).

Boundary_ conditions.--The fdtd_ant.for code uses Mur absorbing boundary conditions,
both f_rst and second order. Second-order Mur is more accurate, but it cannot be used unless the

boundary surface is a homogeneous material. If cells along the boundary face do not all have the

same material property, first-order Mur must be used. Three-integer parameters are entered,
indicating that first-order (= 1) or second order (=2) Mur is used along the YZ-(x = constant) faces,

XZ-faces and XY-faces. For example, if a substrate is built and extends across the problem space
in the XY-plane, the entered values are 1, 1, 2.

File sl 1 .dat

The sl 1 .dat file is used in processing the incident and scattered pulses to produce
frequency domain information. Some information is used in strip.corn and some is used in

sl 1 .corn. Physical length dimensions are entered in millimeters.

Distance between measurements on microstrip line.--To calculate the relative effective

permittivity, voltage measurements are needed at two points on the microstrip line. Enter the

distance in millimeters between the two measurement points.

Height of cell in substrate.--The code can sample currents but not voltages, both of which

are needed for computing the transmission line impedances. The electric field has units of volts per

cell which can be converted to volts by multiplying by the length of a cell in the direction between

the transmission line and the ground plane.

Distance from measurement point to antenna.raThe scattered response must be measured

some distance away from the scattering object to avoid including transient effects. However, to

obtain the correct phase for the load impedance, the impedance at the measurement point must be

transformed. The distance between the measurement point and the antenna (in millimeters) must

be known to complete this transformation.

Maximum frequency._When the time domain information is Fourier transformed to the
frequency domain, the maximum frequency is the inverse of the time step. This frequency is much

larger than the highest frequency for which the code is accurate. Enter in gigahertz the maximum

frequency for which frequency domain information should be calculated.



Maximum numberof points.---Thisnumberservesmuchthe samepurposeasthe
maximumfrequency(i.e., limiting theamountof frequencydomaininformationcalculated).
Usuallyit ismucheasierfor theuserto decideamaximumfrequencythanto decideamaximum
numberof points.Thecodeusesthelimit thatis reachedfirst.

File nffl .dat

File sl 1.dat is the input file for the near-field to far-field transformation code nffl .for.

Another input file used by nffl .for is nfe.inp, which contains the E-field, near-field information

(that must be copied from the for011.dat, etc. files that fdtd_ant.exe produces).

Far-field variables.---Choose 1 for theta and phi and 2 for elevation, azimuth.

Theta (elevation) range.--Enter the initial value of theta, the final value of them, and the

number of theta divisions (not points). Zero divisions means that only the initial value of theta is

used. One division means that calculations are performed at the starting and ending theta values.

Phi (azimuth) range.--Enter the initial value of phi, the final value of phi, and the number

of phi divisions.

Aperture power.--Enter the maximum value for the Poynting vector evaluated over the

aperture of the antenna. This aperture should be the area over which near fields are sampled for

near-field to far-field calculations. This number is used to normalize the directive gain.

TEST EXAMPLE FOR FDTD_ANT

This example presents the steps to model a microstrip endf'tre dipole antenna (fig. 2). Note

that italics indicates text typed at the prompt on the VAX. Some commands will change slightly if

the code is run on a UNIX machine. For example, runfdtd_ant becomes fdtd_ant.x, and @sll
becomes s11.

Obtaining Information About The Transmission Line

Set up the commonr.for file for the correct number of cells and correct cell size (cell

dimensions in meters).

nx = 50 ny = 60 nz = 40

delx = 0.0003 dely = 0.0003 delz = 0.000254 (10 mil)

Set up the problem space for a through transmission line in fdtd_ant.dat.

nstop = 700

source type = 1 (Gaussian)
beta = 200

1 feed = 20, 3, 20, 2, 0, 2, 0
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Thefour datapointsfor savingare

21,06,20, 0, 0, 1,300
21,36,20, 0, 0, 1,300
20,06, 22, 2, 0, 0, 800
16,06, 20, 9, 0, 9, 022

(referenceEz-field)
(secondF_,z-fieldfor calculatingeff. rel.penn.)
(Iy for calculatingline impedance)
(Pypowerin thepulse-notneeded)

Becausethis is a*thru* line, thesubstratemustgoacrosstheentireproblemspace.Theobjectsto
buildare

1,2,1,1,20,49,59,2
1,4,1,1,22,49,59,0
1,1,1,1,20,49,59,0
1,1,20,1,22,2,59,0

!substrate(mat2 is e = 2.2)

!top face of substrate (mat 4 is e = 1.6)

!ground plane on bottom of substrate

!microstrip line (runs in the y-direction)

Examining the built object reveals that all the measurement points are centered around the

microstrip line.

Any file entry not listed should already be correct.

Recompile fdtd_ant (if changes have been made to commonr.for). Then execute fdtd.exe.

fort fdtd_ant

link fdtd_ant

run fdtd_ant

Figure 3 plots the first two columns of data in fdtd_ant.out, the voltage pulses measured at y = 6

and 36. As seen from the figure, only 500 time steps, not 700, were necessary.

Copy output file fdtd_ant.out to pulse.dat

copy fdtd_ant.out puIse.dat

Set up file sl 1.dat if necessary (should already be correct).

Run the command file strip.com.

@strip

The line impedance as a function of frequency is in file znot.out (fig. 4) and the relative effective

permittivity as a function of frequency is in file epeff.out (fig. 5).

Obtaining Pulse Response Of Antenna

Edit the input file fdtd_ant.dat.

nstop = 3000
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Model theentireantennanow.Note that all the lines needed but are not presently in use may be
stored at the bottom of the file ford_ant.Oat.

1,2, 1, 1,20,49,49,2

1,4, 1, 1,22,49,49,0

1,4, 1, 1,20,49,49,0

1, i, 1, 1,20,49,30,0

1, 1, 19,31,20, 11, 11,0

1, 1, 19, 42, 20, 05, 08, 0

1, 1, 12,46,20,07,04,0

1, 1, 25, 42, 20, 05, 08, 0

1, 1, 30, 46, 20, 07, 04, 0

1, 1,20,01,22,02,38,0

1, 1, 20, 39, 22, 02, 09, 0

1, 1, 21, 47, 22, 07, 02, 0

1, 1, 27, 39, 22, 02, 09, 0

!substrate (now only goes to y = 50)

!top face of substrate
!bottom face of substrate

!ground plane

!base of dipole
!left of slot

!left arm

!right of slot

!right arm
!feed line

!1/4 wave transformer (note: same as feedline)

!slot crossing piece
!tuning stub

The rectangular objects described above make up the design shown in figure 2. One aspect not

shown in the drawing is that the two 90 ° bends in the microstrip line have the cell at the tip of the

corner missing. This area corresponds to the corner chamfer that would be used to reduce the

reflections caused by this bend.

Run the file fdtd_ant.exe

run fdtd_ant

The first column of fdtd_ant.out is plotted in figure 6, which is the total field response, not the

reflected field response. As can be seen, only about 2000 time steps were really needed (3000 were

used).

Run the file sl 1.com.

@sll

The file sl 1.out contains the return loss, magnitude of sl 1, real and imaginary parts of Z/Zo, and

real and imaginary parts of Z as a function of frequency. The return loss is plotted in figure 7.

Calculating The Far-Field Patterns

Edit the input file fdtd ant.dat.

nstop = 2000
source type = 3 (ramped cosine)

freq = 15.003 (replaces beta = 200)
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Datapointssavedare

16,06, 20,9, 022
02, 52,03,47, 0, 37,022
03, 35, 18,44, 24,0, 023
03, 35,23,44, 24,0, 023

!poweronmicrostripline
!endfirepowerin x, z-planebeyondsubstrateedge
!powerin x, y-planesbelowsubstrate
!powerin x, y-planeabovesubstrate

Threedatasetsaresavedattheend:

02,52,03,47, 0, 37, 1
03,35, 18,44, 24,0,1
03, 35,23,44,24, 0, 1

!endfh'e
!bottom
_top

Run the file fdtd_ant.exe.

run fdtd_ant

Six output files are produced for011.dat, for012.dat, ..., Ior016.dat. The H-fields for the first data

set are in for011 .dat, and the E-fields are in ior012.dat, etc. For a UNIX machine, for011 .dat
becomes fort.11.

Obtain the power normalization numbers.

To obtain the correct directivity, it is necessary to know the maximum power level in the radiating

aperture (data set 1). Read this from fdtd_ant.out (15377). The maximum power on the feedline

can also be read (23444). These numbers are in units (watts/area of cell face) and must be

multiplied by the cell cross-sectional area before being compared. This area is (0.0003 * 0.0003)

for the aperture and (0.0003 * 0.000254) for the feedline. The feed efficiency, defined as the ratio
of these two powers, is 77 percent.

Set up the input files for nffl.exe.

copy forO12.dat nfe.inp

In file nffl .dat, enter the aperture power density (15377). Set the other values to determine the

number of points plotted out. Using the H-fields gives a different answer from that obtained using
the E-fields, and because the E-field results match more closely with experiment, only the E-fields
are used.

Run file nffl.exe.

run nffl

This file was run twice, once for the phi = 0 ° cut (fig. 8) and once for the phi = 90 ° cut (fig. 9).
The value of phi is set in file nffl.dat.
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ObtainingNear-HeldInformation(Optional)

If desired,insteadof calculatingthecomplexnear-fieldvalues,it ispossibleto savethe
magnitudesof thetangentialcomponents of the E-fields in files for011 .dat, forO12.dat, etc.

Edit file fdtd_ant.flat.

In the section for data sets to be saved at the end, the final number on each line is a one, which is

changed to a two to save the magnitudes of the tangential E-fields.

Run t'de fdtd_ant.

run fdtd_ant

The data in files forO11.dat, etc. may be plotted using a commercial package, as were the plots in

figure 10. Note that the drawing of the antenna structure and all of the graphs were produced with

commercial packages and were not part of this code.

CONCLUDING REMARKS

This document describes the use of a FORTRAN FDTD code that may be used for

antenna design and other electromagnetic source problems. This code is based upon the Luebbers

and Kunz FDTDA code and has been heavily modified by Analex Corporation under a NASA
Lewis Research Center contract. It is available for limited distribution from the NASA Lewis

Research Center. This code has been successfully run on VAX, UNIX (IBM RS/6000 and SUN

SparcStation), and 486-based PC computers.
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Figure 1 .--Yee cell used in electromagnetic implementation of finite-difference time domain (FDTD) code.

Lower ground plane
Microstrip line

Figure 2._Layout of 15-GHz endflre dipole on 20-mil polytetrafluoroethylene substrate with relative permittivity of 2.2.
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Figure 10.--Tangential near-E-fields in vicinity of dipole. (a) E-fields just below bottom of substrate where dipole is located.

Each unit (row, column) represents one cell. (b) E-fields just above top of substrate where feed line is located. Note: dipole

fields can also be seen. {c) E-fields in radiating aperture of dipole. Note: this graph is not to the same scale as (a) and (b).
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